Restricted dispersal determines fine-scale spatial genetic structure of Mongolian gerbils
نویسندگان
چکیده
Restricted gene flow may cause positive spatial genetic autocorrelation of animal populations at fine spatial scales. The Mongolian gerbil Meriones unguiculatus is a territorial, social rodent. Territoriality may create social fences to restrict dispersal or gene flow of Mongolian gerbils to a short distance. Restricted dispersal may differentiate fine-scale spatial genetic structure of populations with increasing distances (i.e., isolation by distance [IBD]). Competition for mates and inbreeding avoidance may result in equal dispersal propensity and subsequently similar spatial genetic autocorrelation between males and females of monogamous gerbils. We genotyped 327 gerbils, live captured from 26 burrow systems on a 9-ha plot in northcentral Inner Mongolia, China, using seven microsatellite loci. Spatial genetic autocorrelation was positive within 80 m and became negative from 80 m to 200 m, suggesting restricted gene flow. Inter-group genetic and geographic distances were related positively, supporting the IBD model. Live trapping data demonstrated equal dispersal propensities of male and female gerbils. Restricted dispersal and social organization may determine fine-scale spatial population genetic structure of social rodents.
منابع مشابه
Genetic consequences of group living in Mongolian gerbils.
Social behavior can shape the local population genetic structure of mammals. Group living can increase pairwise genetic relatedness of mammals at a local level but differentiate the genetic structure at a population level through offspring philopatry and nonrandom mating. Our study aimed to test the hypothesis that social groups of Mongolian gerbils (Meriones unguiculatus) would consist of gene...
متن کاملTug of war between continental gene flow and rearing site philopatry in a migratory bird: the sex-biased dispersal paradigm reconsidered.
Nonrandom dispersal has been recently advanced as a mechanism promoting fine-scale genetic differentiation in resident populations, yet how this applies to species with high rates of dispersal is still unclear. Using a migratory species considered a classical example of male-biased dispersal (the greater snow goose, Chen caerulescens atlantica), we documented a temporally stable fine-scale gene...
متن کاملVariation in fine‐scale genetic structure and local dispersal patterns between peripheral populations of a South American passerine bird
The distribution of suitable habitat influences natal and breeding dispersal at small spatial scales, resulting in strong microgeographic genetic structure. Although environmental variation can promote interpopulation differences in dispersal behavior and local spatial patterns, the effects of distinct ecological conditions on within-species variation in dispersal strategies and in fine-scale g...
متن کاملClonal and fine-scale genetic structure in populations of a restricted Korean endemic, Hosta jonesii (Liliaceae) and the implications for conservation.
BACKGROUND AND AIMS In plant populations the magnitude of spatial genetic structure of apparent individuals (including clonal ramets) can be different from that of sexual individuals (genets). Thus, distinguishing the effects of clonal versus sexual individuals in population genetic analyses could provide important insights for evolutionary biology and conservation. To investigate the effects o...
متن کاملSpatial and genetic structure within populations of wild American ginseng (Panax quinquefolius L., Araliaceae).
Spatial structure and fine-scale genetic structure were analyzed for the medicinal plant American ginseng (Panax quinquefolius L.) to more fully understand biological processes within wild populations. P. quinquefolius has been harvested for more than 250 years and is now considered threatened or rare throughout its range. Plants within four protected and four unprotected populations were signi...
متن کامل